Applying Novel Radiotherapy Technology for Brain Tumors and Other Cancers

Commentary
Podcast

Timothy Chen, MD, highlights how technologies such as ZAP-X and proton therapy may improve outcomes for patients with cancer.

In a conversation with CancerNetwork® at John Theurer Cancer Center, Timothy Chen, MD, highlighted various novel treatment strategies that have impacted his care of patients with brain tumors and other types of cancer.

Chen, a board-certified radiation oncologist and medical director of the Central Nervous System Program at Jersey Shore University Medical Center and the director of Proton Therapy in the Department of Radiation Oncology at Hackensack Meridian Health, first discussed his use of the novel stereotactic radiosurgery modality ZAP-X for patients with brain tumors. According to Chen, this tool may allow for practices to administer radiation at submillimeter precision, which can spare normal tissue from receiving excess radiation.

Another technology that Chen highlighted included GammaTile, a radiation treatment that was developed for the management of brain tumors. He said that this collagen tile may help with administering strong radiation to precisely where the tumor is located, while also protecting healthy tissues to minimize the adverse effects from radiation therapy. Specifically, Chen stated that GammaTile may be beneficial for those with larger, difficult-to-treat tumors.

Finally, Chen discussed the potential applications of proton therapy and how it may improve outcomes in patients compared with standard radiotherapy. According to Chen, proton therapy serves a “great purpose” with what he described as a precise depth charge that can minimize toxicity during treatment.

Additionally, Chen described how proton therapy may help reduce the probability of developing mutations or secondary cancers among pediatric patients. He highlighted the potential benefit of this modality based on a specific case in which a pediatric patient with myxopapillary ependymoma experienced improvements in pain and urinary control following proton therapy.

Regarding these novel forms of therapy, Chen emphasized the notion of multidisciplinary care and said that practices should “work together as a team” when operating these technologies.

“[With] all this technology, it's not just used as it is; the technology brings us to work together,” Chen said. “I think multidisciplinary care is the future. People are no longer siloed…. We all work together.”

Recent Videos
Future research will aim to assess the efficacy of PIPAC-MMC plus systemic therapy vs systemic therapy alone in patients with peritoneal tumors.
Although small incision surgery may serve as a conduit to deliver PIPAC-MMC, it may confer benefits in the staging and treatment of peritoneal tumors.
Patients with peritoneal metastases were historically associated with limited survival and low consideration for clinical trials.
Greater cancer treatment longevity enables oncologists the ability to form more impactful relationships with their patients.
Adaptive radiation may help individualize therapy based on transient factors patients are faced with while receiving treatment for cancer.
Experts from Sibley Memorial Hospital highlight radiation oncology technologies that have played key roles in cancer care at their institution.
Future work may focus on determining strategies for protecting the health of patients who undergo surgery during climate disasters.
A radiation oncologist discussed the theranostics treatment landscape and career opportunities in the field at the 2025 ACRO Summit.
Related Content