CAR-T Cell Therapy Given Green Light by ODAC for B-Cell Acute Lymphoblastic Leukemia

Article

ODAC approval of Novartis' CAR T-Cell therapy paves the way for its FDA approval as a commercially available treatment for B-cell ALL.

It looks like 2017 will be a transformative year for CAR-T therapy. The US Food and Drug Administration (FDA) Oncologic Drugs Advisory Committee (ODAC) unanimously recommended approval of CTL019 (tisagenlecleucel) on July 12, 2017 for the treatment of relapsed or refractory pediatric and young adult patients with B-cell acute lymphoblastic leukemia (ALL).

Tisagenlecleucel is an investigational chimeric antigen receptor (CAR) T cell therapy by Novartis. The advisory committee hearing was the last major regulatory milestone before the agency decides in September whether to approve the treatment, which would make this the first-ever commercially approved CAR-T cell therapy. The committee’s unanimous positive vote bodes well for this gene therapy approach.

Effective treatment options for patients with relapsed/refractory ALL are limited. In pediatric and young adult patients with B-cell ALL who relapse or are refractory to treatment, the survival rates are very low. "We know firsthand from treating children and young adults with relapsed/refractory B-cell ALL that they desperately need innovative medicines that provide a new approach to managing this aggressive disease," said Stephan Grupp, MD, PhD, Professor of Pediatrics at the Perelman School of Medicine at Pennsylvania University and Director of the Cancer Immunotherapy Frontier Program, both in Philadelphia, Pennsylvania.

CTL019 was first developed by the University of Pennsylvania and uses the 4-1BB costimulatory domain in its chimeric antigen receptor to enhance cellular responses. This approach in clinical studies has been associated with long-lasting remissions in relapsed and treatment refractory patients.

CAR-T is manufactured for each individual patient using their own cells. During the treatment process, T cells are drawn from a patient's blood and reprogrammed in the manufacturing facility to create T cells that are genetically coded to express a chimeric antigen receptor to recognize and fight cancer cells and other B-cell malignancies.

Recent Videos
Experts at Yale Cancer Center highlight ongoing trials intended to improve outcomes across mantle cell lymphoma, T-cell lymphoma, and other populations.
Yale’s COPPER Center aims to address disparities and out-of-pocket costs for patients, thereby improving the delivery of complex cancer treatment.
Non-Hodgkin lymphoma and other indolent forms of disease may require sequencing new treatments for years or decades, said Scott Huntington, MD, MPH, MSc.
Fixed-duration therapy may be more suitable for younger patients, while continuous therapy may benefit those who are older with more comorbidities.
A new clinical trial aims to offer a novel allogenic CAR T-cell product for patients with lymphoma closer to home.
Determining the molecular characteristics of one’s disease may influence the therapy employed in the first line as well as subsequent settings.
Modification of REMS programs may help patients travel back to community practices sooner, according to Suman Kambhampati, MD.
Related Content