Computer Outperforms Humans in MRI Brain Tumor Analysis

Article

Computer analysis of subvisual data extracted from routine clinical MRI exams outperforms human experts at differentiating brain tumor recurrence from radiation necrosis.

Computer analysis of subvisual data extracted from routine clinical magnetic resonance imaging (MRI) exams outperforms human experts at differentiating brain tumor recurrence from radiation necrosis, according to findings from a small study reported at the 21st Annual Scientific Meeting of the Society for Neuro-Oncology, held November 17–20 in Scottsdale, Arizona.

Combining human and computer assessments might yield even better accuracy, reported Prateek Prasanna, a PhD student at Case Western Research University in Cleveland, Ohio.

“Radiomic features are independently diagnostic of tumor recurrence with an accuracy of 75%,” Prasanna said. “Radiomic analysis could serve as a decision-support tool to enable timely and appropriate patient management in brain tumors.”

Integrated radiomic analysis and expert diagnoses further increased recurrent tumor-detection and radiation necrosis detection.

Radiation necrosis is a delayed cancer radiotherapy injury to nontarget brain tissue that can emerge up to 6 months or longer after treatment. It can mimic tumor recurrence on standard MRI, with similar enhancement patterns.

“Definitive diagnosis is only possible via biopsy or resection,” Prasanna said. “There is a need for non-invasive techniques to differentiate recurrent tumors from radiation necrosis.”

The research team sought to evaluate the associations of histologic attributes of recurrent tumors and tumor necrosis with gradient orientation–based radiomic features extracted via high-throughput computing algorithms from routine clinical MRI image scan data. Statistical texture analyses were undertaken to quantify image characteristics like smoothness and heterogeneity. A goal of the study was to determine whether such computer-radiomic analysis can perform as well as human expert readers, and whether integrated radiomic plus expert consensus outperforms either alone.

Data from MRI T1 gadolinium, T2-weighted, and T2-FLAIR imaging exams were preprocessed and recurrent tumors and radiation-necrotic lesions were manually segmented. Radiomic subvisual features were extracted and their associations with pathologic features were analyzed.

Accuracy at differentiating necrosis from recurrent tumors (tumor detection accuracy) was 42% (5/12) and 50% (6/12) for two human readers, compared to 75% (9/12) for the radiomics classifier, Prasanna reported. The readers only agreed on 4 of 12 recurrent tumors.

Integrating expert reader diagnoses and radiomic classifier score improved detection accuracy for both recurrent tumors (91.7%; 11 of 12 cases) and radiation necrosis (100%; 3 of 3 cases).

The findings suggest that MRI-extracted subvisual features might reflect cellular differences between recurrent brain tumors and radiation necrosis. Prasanna and colleagues next intend to conduct prospective validation studies.

Recent Videos
Raymond B. Mailhot, MD, MPH, discussed how radiation therapy can impact education and survivorship for pediatric survivors of brain tumors.
Significant results from a retrospective analysis of brain tumor survivor academic performance after radiotherapy emerged despite small sampling size.
Raymond B. Mailhot, MD, MPH, discussed methods for comparing academic performances of patients following radiation therapy with healthy control groups.
The act of asking for help is critical to finding mentors who can help one advance in the brain cancer field, according to Yoshie Umemura, MD.
Through multidisciplinary collaboration, Yoshie Umemura, MD, and colleagues were able to organize the Gliofocus trial in brain cancer relatively fast.
Yoshie Umemura, MD, discusses how multiple departments can positively impact a patient with brain cancer during their visit to a medical center.
Antibody-drug conjugates and small molecule inhibitors may show utility in the neuro-oncology field, according to Nader Sanai, MD.
The phase 3 Gliofocus trial aims to meaningfully improve survival and quality of life with niraparib among patients with newly diagnosed glioblastoma.
Findings from a proof-of-concept study show a potential survival benefit with niraparib/radiotherapy in patients with newly diagnosed glioblastoma.
ZAP-X may provide submillimeter accuracy when administering radiation to patients with brain tumors.