Expert Highlights Applications of Proton Therapy in Radiation Oncology

Commentary
Video

The use of proton therapy may offer a more specific depth charge compared with conventional radiation, according to Timothy Chen, MD.

Administering proton therapy to pediatric populations with cancer may serve as a “great application” that helps patients avoid developing mutations and second cancers, says Timothy Chen, MD.

Chen, a board-certified radiation oncologist and medical director of the Central Nervous System Program at Jersey Shore University Medical Center and the director of Proton Therapy in the Department of Radiation Oncology at Hackensack Meridian Health, spoke with CancerNetwork® about the potential applications of proton therapy and benefits this modality may offer compared with standard radiation.

In addition to the potential utility of proton therapy among pediatric populations, Chen highlighted how this technique may demonstrate more precision than others based on what he described as a “depth charge.” For example, it may be possible to administer proton therapy to breast tumors while sparing the lungs from receiving any excess radiation.

Transcript:

Proton therapy is type of radiation but with a different particle hitting the target. If you think about conventional radiation like a pistol, proton [therapy] is like a cannon. It also has a great purpose with what’s called a depth charge. We can set a cannon to be explored at a certain depth. The conventional radiation comes and goes while passing through the structure. With proton therapy, we can say where I want to go and stop right there. With that, there are great applications.

No. 1 is in pediatric [patients with] cancer. Because a child is still growing, the conventional radiation can create mutations, and they could eventually develop a second cancer in their later life. Proton therapy is a particularly great design for pediatric patients [with] cancer; their chance of getting a mutation or a second cancer is smaller.

The second thing is about the depth charge. Because we can set the characteristic of this beam, we can treat quite a large area that’s not accessible with conventional radiation. For example, in breast cancer, the breast sits on top of the chest wall, and as we breathe, the lungs get in [the way and receive] the radiation. But because we can set the depth [with proton therapy], you can confine radiation to the breasts and not touch the lungs.

Recent Videos
Factors like genetic mutations and smoking may represent red flags in pancreatic cancer detection, said Jose G. Trevino, II, MD, FACS.
Thomas Hope, MD, believes that an NRC initiative to update infiltration guidelines may organically address concerns that H.R. 2541 outlines.
Insurance and distance to a tertiary cancer center were 2 barriers to receiving high-quality breast cancer care, according to Rachel Greenup, MD, MPH.
Thomas Hope, MD, had not observed an adverse effect attributable to an infiltration across more than a decade of administering nuclear agents at UCSF.
Numerous clinical trials vindicating the addition of immunotherapy to first-line chemotherapy in SCLC have emerged over the last several years.
According to John Henson, MD, “What we need are better treatments to control the [brain] tumor once it’s detected.”
First-degree relatives of patients who passed away from pancreatic cancer should be genetically tested to identify their risk for the disease.
Surgery and radiation chemotherapy can affect immunotherapy’s ability to target tumor cells in the nervous system, according to John Henson, MD.
Thinking about how to sequence additional agents following targeted therapy may be a key consideration in the future of lung cancer care.
Endobronchial ultrasound, robotic bronchoscopy, or other expensive procedures may exacerbate financial toxicity for patients seeking lung cancer care.
Related Content