Expert Highlights Applications of Proton Therapy in Radiation Oncology

Commentary
Video

The use of proton therapy may offer a more specific depth charge compared with conventional radiation, according to Timothy Chen, MD.

Administering proton therapy to pediatric populations with cancer may serve as a “great application” that helps patients avoid developing mutations and second cancers, says Timothy Chen, MD.

Chen, a board-certified radiation oncologist and medical director of the Central Nervous System Program at Jersey Shore University Medical Center and the director of Proton Therapy in the Department of Radiation Oncology at Hackensack Meridian Health, spoke with CancerNetwork® about the potential applications of proton therapy and benefits this modality may offer compared with standard radiation.

In addition to the potential utility of proton therapy among pediatric populations, Chen highlighted how this technique may demonstrate more precision than others based on what he described as a “depth charge.” For example, it may be possible to administer proton therapy to breast tumors while sparing the lungs from receiving any excess radiation.

Transcript:

Proton therapy is type of radiation but with a different particle hitting the target. If you think about conventional radiation like a pistol, proton [therapy] is like a cannon. It also has a great purpose with what’s called a depth charge. We can set a cannon to be explored at a certain depth. The conventional radiation comes and goes while passing through the structure. With proton therapy, we can say where I want to go and stop right there. With that, there are great applications.

No. 1 is in pediatric [patients with] cancer. Because a child is still growing, the conventional radiation can create mutations, and they could eventually develop a second cancer in their later life. Proton therapy is a particularly great design for pediatric patients [with] cancer; their chance of getting a mutation or a second cancer is smaller.

The second thing is about the depth charge. Because we can set the characteristic of this beam, we can treat quite a large area that’s not accessible with conventional radiation. For example, in breast cancer, the breast sits on top of the chest wall, and as we breathe, the lungs get in [the way and receive] the radiation. But because we can set the depth [with proton therapy], you can confine radiation to the breasts and not touch the lungs.

Recent Videos
Shwetal Mehta, PhD, describes efforts regarding the development of protein degraders and antibody-drug conjugates in the neuro-oncology field.
Liquid biopsy tests may help determine the extent of activity among patients who receive a novel fourth-generation EGFR inhibitor for brain cancer.
Shwetal Mehta, PhD, highlights novel brain cancer drug development procedures in the clinical lab and pre-clinical arms of the Ivy Brain Tumor Center.
Observing changes in the tumor microenvironment before and after a biopsy may elucidate how kidney cancer cells interact with immune cells.
Various kidney cancer trials have combined agents such as A2a receptor inhibitors with immunotherapy backbones to potentially improve treatment outcomes.
Leveraging novel agents, innovative clinical trial designs, and correlative studies may improve the treatment of patients with kidney cancer.
Sympathomimetic effects related to psilocybin may preclude use among patients with coronary artery disease or those with a high risk of stroke.
Psilocybin-assisted psychotherapy may be integrated into pre-existing behavioral health aspects of comprehensive cancer treatment.
Psilocybin may help address a need for effective medication to aid those who have psychological challenges related to a serious cancer diagnosis.
Related Content