Lower Likelihood of Genomic Profiling Observed for Men With African Ancestry

Article

Disparities regarding comprehensive genomic profiling came to light during a presentation at the 2021 ASCO Annual Meeting.

Notabe study findings reveal that comprehensive genomic profiling early in treatment as well as inclusion in clinical trials is less likely in patients with prostate cancer who have African ancestry, according to data that were presented at the 2021 American Society of Clinical Oncology (ASCO) Annual Meeting.

For the study that was presented by Brandon A. Mahal, MD, 11,741 patients with prostate cancer with comprehensive genomic profiling done as part of routine care were evaluated, of whom 12% had African ancestry. A single-nucleotide polymorphism-based approach was used to infer predominant ancestry. In addition, the investigators queried a de-identified clinico-genomic database (CGDB) of 897 evaluable patients with prostate cancer to examine trends in comprehensive genomic profiling utilization, treatment patterns, and clinical trial enrollment.

In the larger cohort, the median age was 67 years and 98% had adenocarcinoma histology. The median age of patients with African ancestry was 64 years vs 67 years for patients with European ancestry (P <.001). In addition, 4.2% of patients with African ancestry were younger than 50 years of age vs 2.5% of patients with European ancestry.

Several gene alterations were significantly enriched in patients with African ancestry versus patients with European ancestry in SPOP (11.9% vs 7.3%), CDK12 (10.0% vs 5.2%), CCND1 (6.0% vs 3.8%), KMT2D (7.7% vs 5.1%), HGF (4.1% vs 2.5%), and MYC (13.4% vs 10.6%).

Gene alterations that occurred less frequently in patients with African ancestry versus European ancestry included TP53 (35% vs 43%)and PTEN (21% vs 33%). Additionally, TMPRSS2-ERG rearrangements also occurred less frequently in patients with African ancestry (15% vs 33%).

When comparing targetable gene alterations, the investigators found similar rates of actionable genes (22.1% in patients with African ancestry vs 22.4% in patients with European ancestry) as well as DNA damage response-associated genes (17.8% in patients with African ancestry vs 18.7% in patients with European ancestry). Mahal noted, however, that BRAF alterations were slightly enriched in patients with African ancestry (5.0% vs 3.2%; P <.05).

Turning to the CGDB cohort, Mahal reported that 91% of patients with African ancestry were treated in the community versus 63% of patients with European ancestry.

“Notably, less than 10% of individuals with African ancestry were treated in an academic setting, whereas 37% of individuals with European ancestry were treated in an academic setting,” said Mahal, assistant professor of radiation oncology and assistant director of community outreach and engagement, University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida.

Eighty-five percent of patients with African ancestry had castration-resistant prostate cancer versus 72% of patients with European ancestry.

Also in the CGDB cohort, it was noted that patients with African ancestry received a median of 2 lines of therapy prior to undergoing comprehensive genomic profiling, compared with 1 line of therapy in patients with European ancestry.

“While there were no significant differences in the use of targeted therapies, including PARP inhibitors or other therapies, only 11% of African-ancestry patients received a clinical study drug compared with 30% of European-ancestry patients,” Mahal said. This was observed both for patients treated in the academic setting as well as for patients treated in the community.

“Please note that these findings are from a small cohort, and in particular, in the academic setting, there were only 5 individuals with African ancestry that were treated at academic centers and therefore, these findings must be interpreted within these limitations,” Mahal noted as a caveat.

“Ultimately, equitable use of comprehensive genomic profile testing, clinical trial enrollment, and subsequent precision medicine treatment pathways could lead to a major reduction in disparities,” Mahal concluded.

Reference

Sivakumar S, Lee JK, Moore JA, et al. Ancestral characterization of the genomic landscape, comprehensive genomic profiling utilization, and treatment patterns may inform disparities in advanced prostate cancer: A large-scale analysis. J Clin Oncol 39, 2021 (suppl 15; abstr 5003). doi: 10.1200/JCO.2021.39.15_suppl.5003

Recent Videos
Phase 1 data may show the possibility of rationally designing agents that can preferentially target PI3K mutations in solid tumors.
Funding a clinical trial to further assess liquid biopsy in patients with Li-Fraumeni syndrome may help with detecting cancers early across the board.
Michael J. Hall, MD, MS, FASCO, discusses the need to reduce barriers to care for those with Li-Fraumeni syndrome, including those who live in rural areas.
Patrick Oh, MD, highlights next steps for further research in treating patients with systemic therapy in addition to radiotherapy for early-stage NSCLC.
The ability of metformin to disrupt mitochondrial metabolism may help mitigate the risk of cancer in patients with Li-Fraumeni syndrome.
Increased use of systemic therapies, particularly among patients with high-risk node-negative NSCLC, were observed following radiotherapy.
Heather Zinkin, MD, states that reflexology improved pain from chemotherapy-induced neuropathy in patients undergoing radiotherapy for breast cancer.
Interest in novel therapies to improve outcomes initiated an investigation of the use of immunotherapy in early-stage non-small cell lung cancer.
ctDNA reductions or clearance also appeared to correlate with a decrease in disease burden during the pre-boost phase of radiotherapy.
Investigators evaluated ctDNA as a potentially noninvasive method to predict response to radiotherapy among those with gynecologic malignancies.
Related Content