Mouth Bacteria Can Worsen Colorectal Cancer

Article

A study found that fusobacteria, commonly found in the mouth, can enrich colorectal cancer cells, in a process mediated by the Fap2 protein.

A series of laboratory findings showed that fusobacteria, commonly found in the mouth, travels through the bloodstream and enriches colorectal cancer cells, a process mediated by the Fap2 protein’s ability to recognize a sugar called Gal-GalNAc. In the future, either Fap2 or Gal-GalNAc could represent therapeutic targets for colorectal cancer.

“If we know how fusobacteria localize and become enriched in colon tumors, hopefully we can utilize the same or similar mechanisms to guide and deliver cancer therapeutics to colon tumors,” said co-senior author Wendy Garrett, MD, PhD, of the Harvard T.H. Chan School of Public Health in Boston, in a press release. The paper was published in Cell Host & Microbe.

The new work involved both mouse models and human tissue samples. First, researchers injected fusobacteria (specifically, Fusobacterium nucleatum) into tail veins of mice with precancerous or malignant colorectal tumors, and found that the tumor cells became enriched with fusobacteria compared with adjacent tissue. The bacteria were also detected in most human colorectal cancer metastases tested, and not in tumor-free liver tissue.

Further testing then showed that Fap2, on the surface of the bacteria in question, recognizes the polysaccharide molecule Gal-GalNAc. They found that Fap2 mediates the colonization of colorectal cancer cells via binding with Gal-GalNAc. The protein also has been shown in earlier work to play a role in suppressing host immunity, thus allowing colorectal cancer to proliferate. Fap2 binds to an immunoregulatory signaling receptor found in T cells and natural killer cells called TIGIT, an interaction that reduces the killing of tumor cells.

Taken all together, these findings paint a picture of just how a mouth bacterium actually works to worsen and accelerate colorectal cancer. The bacterium travels via the bloodstream to reach colorectal tumors, at which point the Fap2 protein binds to the host cells via the Gal-GalNAc molecule, and simultaneously suppresses immune response in the area to allow the tumor to grow.

“Although it may not be possible to prevent oral microbes from entering the bloodstream and reaching colorectal tumors, our findings suggest that drugs targeting either Fap2 or Gal-GalNAc could potentially prevent these bacteria from exacerbating colorectal cancer,” Garrett said.

Recent Videos
Prolonging systemic therapy in patients with gastric or gastroesophageal junction cancers may offer better outcomes than radiation therapy.
Advances in perioperative targeted therapies may enable organ preservation and significantly enhance outcomes for patients with gastric cancers.
Combining sotorasib with panitumumab may reduce the burden of disease in patients with KRAS G12C-mutated metastatic colorectal cancer.
Findings from the CodeBreak 300 study have cemented sotorasib/panitumumab as a third-line treatment option for KRAS G12C-mutated colorectal cancer.
Sotorasib plus panitumumab may offer improved survival compared with previously approved treatment options in KRAS G12C-mutated colorectal cancer.
Additional local, regional, or national policy may bolster access to screening for colorectal cancer, according to Aasma Shaukat, MD, MPH.
The mechanism of action for daraxonrasib inhibits effectors and signaling while forming a relatively unstable tri-complex with codon 12 mutations.
Almost all patients evaluable for efficacy reported a decrease in ctDNA when treated with daraxonrasib for RAS-mutant pancreatic ductal adenocarcinoma.