(P133) Spinal Cord Dose Comparison With and Without Contrast Density Correction on CT Myelogram Simulations for Patients Treated With Stereotactic Body or Conventional Radiotherapy

Publication
Article
OncologyOncology Vol 29 No 4_Suppl_1
Volume 29
Issue 4_Suppl_1

These data suggest that the use of a CT myelogram with simulation significantly underestimates the spinal cord maximum and mean doses. The clinical significance of this finding is uncertain, and this study is limited by its small sample size. Density correction should be further investigated in a larger study, given the high doses used in SBRT and potential morbidity of spinal cord injury.

Sukhjeet S. Batth, MD, MS, Raymond Chiu, CMD, Nicholas Trakul, MD, PhD; USC Norris Cancer Center

PURPOSE/OBJECTIVES: Patients treated with stereotactic body radiotherapy (SBRT, also known as stereotactic ablative radiotherapy) or conventional RT to spinal targets often undergo a computed tomography (CT) simulation with a myelogram to accurately identify the spinal cord. Treatment planning algorithms use Hounsfield units and a CT density table to calculate radiation dose. Accuracy of these calculations may be improved by correcting for the contrast’s actual density, which is not present at the time of treatment delivery. We hypothesize that the spinal cord receives a higher radiation dose than calculated after correction of the contrast’s physical density.

MATERIALS AND METHODS: CT simulations with a myelogram for treatment of 10 spinal targets from nine patients were retrospectively reviewed. Seven of these targets were treated with SBRT, one was treated with intensity-modulated RT, and two were treated with three-dimensional conformal RT. The contrast from the myelogram was contoured in the treatment planning software, and the physical density was adjusted to 1 g/cm3. The uncorrected spinal cord maximum and mean doses were then compared with the doses after correction of the density. A two-tailed, paired t-test was used to compare the calculated doses.

RESULTS: The corrected spinal cord doses were all significantly higher than the uncorrected doses based on paired t-test for the maximum dose (P = .0073) and the mean dose (P = .00087). The mean maximum cord dose was 2,065 cGy and 2,077 cGy after correction. The mean of the average cord dose was 1,302 cGy and 1,315 cGy after correction.

CONCLUSIONS: These data suggest that the use of a CT myelogram with simulation significantly underestimates the spinal cord maximum and mean doses. The clinical significance of this finding is uncertain, and this study is limited by its small sample size. Density correction should be further investigated in a larger study, given the high doses used in SBRT and potential morbidity of spinal cord injury.

Proceedings of the 97th Annual Meeting of the American Radium Society - americanradiumsociety.org

Articles in this issue

(P005) Ultrasensitive PSA Identifies Patients With Organ-Confined Prostate Cancer Requiring Postop Radiotherapy
(P001) Disparities in the Local Management of Breast Cancer in the United States According to Health Insurance Status
(P002) Predictors of CNS Disease in Metastatic Melanoma: Desmoplastic Subtype Associated With Higher Risk
(P003) Identification of Somatic Mutations Using Fine Needle Aspiration: Correlation With Clinical Outcomes in Patients With Locally Advanced Pancreatic Cancer
(P004) A Retrospective Study to Assess Disparities in the Utilization of Intensity-Modulated Radiotherapy (IMRT) and Proton Therapy (PT) in the Treatment of Prostate Cancer (PCa)
(S001) Tumor Control and Toxicity Outcomes for Head and Neck Cancer Patients Re-Treated With Intensity-Modulated Radiation Therapy (IMRT)-A Fifteen-Year Experience
(S003) Weekly IGRT Volumetric Response Analysis as a Predictive Tool for Locoregional Control in Head and Neck Cancer Radiotherapy 
(S004) Combination of Radiotherapy and Cetuximab for Aggressive, High-Risk Cutaneous Squamous Cell Cancer of the Head and Neck: A Propensity Score Analysis
(S005) Radiotherapy for Carcinoma of the Hypopharynx Over Five Decades: Experience at a Single Institution
(S002) Prognostic Value of Intraradiation Treatment FDG-PET Parameters in Locally Advanced Oropharyngeal Cancer
(P006) The Role of Sequential Imaging in Cervical Cancer Management
(P008) Pretreatment FDG Uptake of Nontarget Lung Tissue Correlates With Symptomatic Pneumonitis Following Stereotactic Ablative Radiotherapy (SABR)
(P009) Monte Carlo Dosimetry Evaluation of Lung Stereotactic Body Radiosurgery
(P010) Stereotactic Body Radiotherapy for Treatment of Adrenal Gland Metastasis: Toxicity, Outcomes, and Patterns of Failure
(P011) Stereotactic Radiosurgery and BRAF Inhibitor Therapy for Melanoma Brain Metastases Is Associated With Increased Risk for Radiation Necrosis
Recent Videos
For example, you have a belt of certain diseases or genetic disorders that you come across, such as sickle cell disease or thalassemia, that are more prevalent in these areas.
Talent shortages in the manufacturing and administration of cellular therapies are problems that must be addressed at the level of each country.
Administering oral SERD-based regimens may enhance patients’ quality of life when undergoing treatment for ER-positive, HER2-negative breast cancer.
Point-of-care manufacturing, scalable manufacturing, and bringing the cost down [can help].
Gedatolisib-based triplet regimens may be effective among patients with prior endocrine resistance or rapid progression following frontline therapy.
Hosts Manojkumar Bupathi, MD, MS, and Benjamin Garmezy, MD, discuss presentations at ESMO 2025 that may impact bladder, kidney, and prostate cancer care.
Mandating additional immunotherapy infusions may help replenish T cells and enhance tumor penetration for solid tumors, including GI malignancies.
A novel cancer database may assist patients determine what clinical trials they are eligible to enroll on and identify the next best steps for treatment.
Receiving information regarding tumor-associated antigens or mutational statuses from biopsies may help treatment selection in GI malignancies.
Related Content