(P135) Dose Escalation Using Conventional Versus IMRT Planning for Hypofractionated Palliative Radiation of Lumbosacral Bony Metastases

Publication
Article
OncologyOncology Vol 28 No 1S
Volume 28
Issue 1S

The standard approach for palliation of bone metastasis (BM) is conventionally planned radiation (CRT). Randomized studies have shown the equivalence of hypofractionated vs conventionally fractionated regimens; yet, reported pain control is poor with either approach, resulting in some degree of pain relief in only 50% to 80% of cases and complete response in 15% to 60% of cases.

Bevan Ly, MD, Elizabeth Bossart, PhD, Alan Pollack, MD, PhD, William Amestoy, CMD, Nesrin Dogan, PhD, Jean Wright, MD; University of Miami; Jackson Memorial Hospital

Purpose: The standard approach for palliation of bone metastasis (BM) is conventionally planned radiation (CRT). Randomized studies have shown the equivalence of hypofractionated vs conventionally fractionated regimens; yet, reported pain control is poor with either approach, resulting in some degree of pain relief in only 50% to 80% of cases and complete response in 15% to 60% of cases. We performed a dosimetric comparison of CRT vs intensity-modulated radiation therapy (IMRT) using standardized dose constraints to investigate if IMRT allowed hypofractionated dose escalation to bony targets in the pelvis and lumbosacral spine, based on the hypothesis that dose escalation will result in superior pain control if it can be delivered within acceptable dose limits to normal tissues.

Materials and Methods: We retrospectively replanned 10 patients with IMRT who were initially treated with palliative CRT for BM involving the pelvis and/or lumbar spine at our institution, using standardized dose constraints for five- fraction regimens, as published in American Association of Physicists in Medicine (AAPM) Task Group (TG) 101. We defined the planning target volume (PTV) as all bony structures contained within the 50% isodose line based on original conventional plans. For IMRT plans, optimization was performed to achieve 95% PTV coverage with the prescription dose while meeting published dose constraints for five-fraction regimens, including spinal cord maximum 30 Gy, cauda equina maximum 32 Gy, and bowel maximum 35 Gy. IMRT plans were optimized for a prescription of 30 Gy in five fractions, and dosimetric characteristics were extracted for five-fraction regimens starting at 20 Gy and escalating by 1 Gy per fraction to 35 Gy.

Results: IMRT allowed dose escalation to 30 Gy in five fractions using AAPM TG 101 constraints, with a mean maximum spinal cord dose of 29.6 Gy, mean maximum cauda equina dose of 31.5 Gy, and mean maximum bowel dose of 27.9 Gy. For the same targets, CRT five-fraction plans only allowed a dose of 25 Gy: the mean maximum spinal cord dose for a 25-Gy prescription was 29.3 Gy (within constraint) but 35.2 Gy for 30 Gy (above constraint); the mean maximum cauda equina dose for a 25-Gy prescription was 30.4 Gy (within constraint) but 36.4 Gy for 30 Gy (above constraint); and the mean maximum bowel dose was 28 Gy for a 25-Gy prescription and 33.6 Gy for 30 Gy (both within constraints). The bowel V20 was extremely low for five-fraction regimens using IMRT, with a mean V20 of 2 cc for IMRT plans, and much higher, 39.5 cc, for CRT plans.

Conclusions: IMRT resulted in the ability to dose-escalate to bony targets in the pelvis and/or lumbosacral spine while meeting standardized dose constraints to the spinal cord/cauda equina and bowel. IMRT allowed a dose of 30 Gy using a five-fraction regimen, while CRT allowed a dose of only 25 Gy using AAPM TG101 constraints. Prospective study is warranted to determine if the achieved dose escalation using IMRT results in clinically meaningful improvements in pain control and acceptable toxicity.

Articles in this issue

(P113) Age and Marital Status Are Associated With Choice of Mastectomy in Patients Eligible for Breast Conservation Therapy
(P112) Single-Institution Experience With Intrabeam IORT for Treatment of Early-Stage Breast Cancer
(P110) Breast Cancer Before Age 40: Current Patterns in Clinical Presentation and Local Management
(P111) Accelerated Partial-Breast Irradiation With Multicatheter High-Dose-Rate Brachytherapy: Feasibility and Results in a Private Practice Cohort
(P115) Breast Cancer Laterality Does Not Influence Overall Survival in a Large Modern Cohort: Implications for Radiation-Related Cardiac Mortality
(P117) Anatomical Variations and Radiation Technique for Breast Cancer
(P116) Bilateral Immediate DIEP Reconstruction and Postmastectomy Radiotherapy: Experience at a Tertiary Care Institution
(P118) Metadherin Overexpression Is Associated With Improved Locoregional Control After Mastectomy
(P119) Effect of Economic Environment on Use of Postlumpectomy Radiation Therapy for Stage I Breast Cancer
(P120) Immediate Versus Delayed Reconstruction After Mastectomy in the United States Medicare Breast Cancer Patient
(P121) Trend in Age and Racial Disparities in the Receipt of Postlumpectomy Radiation Therapy for Stage I Breast Cancer: 2004–2009
(P122) Streamlining Referring Physicians Orders With ‘Reflex Testing’ Significantly Decreases Time to Resolution for Abnormal Screening Mammograms
(P123) National Trends in the Local Management of Early-Stage Paget Disease of the Breast
(P124) Effect of Inhomogeneity on Cardiac and Lung Dose in Partial-Breast Irradiation Using HDR Brachytherapy
(P125) Breast Cancer Outcomes With Anthracycline-Based Chemotherapy for Residual Disease Burden After Full-Dose Neoadjuvant Chemotherapy and Surgery Followed by Radiation Treatment
Recent Videos
Co-hosts Kristie L. Kahl and Andrew Svonavec highlight what to look forward to at the 67th Annual ASH Meeting in Orlando.
Patients with mediastinal lymph node involved-lung cancer may benefit from chemoimmunotherapy in the neoadjuvant setting.
Stressing the importance of prompt AE disclosure before they become severe can ensure that a patient can still undergo resection with curative intent.
Thomas Marron, MD, PhD, presented a session on clinical data that established standards of care for stage II and III lung cancer treatment at CFS 2025.
Sonia Jain, PhD, stated that depatuxizumab mafodotin, ABBV-221, and ABBV-321 were 3 of the most prominent ADCs in EGFR-amplified glioblastoma.
Skin toxicities are common with targeted therapies for GI malignancies but can be remedied by preventative measures and a collaboration with dermatology.
Computational models help researchers anticipate how ADCs may behave in later lines of development, while they are still in the early stages.
ADC payloads with high levels of potency can sometimes lead to higher levels of toxicity, which can eliminate the therapeutic window for patients with cancer.
According to Greg Thurber, PhD, target-mediated uptake is the biggest driver of efficacy for antibody-drug conjugates as a cancer treatment.
Related Content