Thermoacoustic CT Under Development for Breast Imaging

Publication
Article
Oncology NEWS InternationalOncology NEWS International Vol 9 No 3
Volume 9
Issue 3

SAN ANTONIO-Measurement of radiowave absorption could offer a new noninvasive approach to the identification and diagnosis of breast cancer, investigators involved in an ongoing evaluation of the technology reported at the 22nd Annual San Antonio Breast Cancer Symposium.

SAN ANTONIO—Measurement of radiowave absorption could offer a new noninvasive approach to the identification and diagnosis of breast cancer, investigators involved in an ongoing evaluation of the technology reported at the 22nd Annual San Antonio Breast Cancer Symposium.

Called thermoacoustic computed tomography (TCT), the technology takes advantage of the fact that the dielectric properties of cancer differ from those of surrounding normal tissues, Kathy Miller, MD, an oncologist at Indiana University, Indianapolis, said at a symposium poster session.

Thermoacoustic CT employs computerized analysis of ultra-high-frequency (UHF) radiowaves to distinguish breast cancer, which exhibits increased UHF absorption, from normal tissue. As UHF energy is absorbed, tissue heats and expands, creating a pressure wave that propagates through the tissue and that can be detected as sound, Dr. Miller explained.

A prototype TCT device consists of a hemispherical bowl containing 64 transducers mounted in a spiral array. The bowl is mounted in a shaft that rotates 360 degrees on its axis. A water-filled cylindrical waveguide, mounted beneath a cushioned examining table, provides radiowave illumination to the breast. A patient lies prone on the table, positioning one breast into an examining tank.

Radiofrequency Energy Pulses

Radiofrequency energy pulses are supplied by a 25 kW generator at an average repetition rate of 500 Hz. Immediately following each pulse, the output of the 64 transducers is captured for computer analysis. After completion of an acquisition series of 2,048 pulses, the bowl is rotated 1.4 degrees, and the series is repeated. The process is repeated 256 times during a total acquisition that lasts less than 10 minutes. The pulse sequences are assembled by computer into a tomographic image.

After validation of the technology in preclinical studies involving excised pig kidneys and a mouse xenograft model, the TCT device underwent an initial clinical evaluation of five patients with documented breast cancer. Three patients were imaged at diagnosis, and two patients had TCT imaging after completion of chemotherapy that resulted in complete remission.

Dr. Miller reported that TCT revealed areas of thermoacoustic contrast enhancement corresponding to palpable tumor in the three patients who had diagnostic scans. In the two treated patients, TCT yielded normal thermoacoustic images that confirmed the pathologic complete remissions.

“This is the first study proving that we can image the breast with a thermoacous-tic technique and that we can distinguish cancerous lesions from normal surrounding tissue,” Dr. Miller said.

Second Prototype

The investigators, in conjunction with Optisonics, Inc. (Indianapolis), have begun work on a second prototype device that should offer improved spatial resolution and decreased scan acquisition time, she said. Additionally, planning has begun for a clinical trial of TCT for evaluation of response to neoadjuvant chemotherapy.

“The neoadjuvant setting is really the ideal way to evaluate a new imaging technique,” Dr. Miller said. “The patients will all have known tumor and will be imaged with more traditional methods at the same time that they undergo thermo-acoustic imaging.”

Preclinical evaluation also continues in an effort to provide more insight into the physiologic aspects of cancer that contribute to the characteristics of TCT images.

Recent Videos
Heather Zinkin, MD, states that reflexology improved pain from chemotherapy-induced neuropathy in patients undergoing radiotherapy for breast cancer.
Study findings reveal that patients with breast cancer reported overall improvement in their experience when receiving reflexology plus radiotherapy.
Patients undergoing radiotherapy for breast cancer were offered 15-minute nurse-led reflexology sessions to increase energy and reduce stress and pain.
Whole or accelerated partial breast ultra-hypofractionated radiation in older patients with early breast cancer may reduce recurrence with low toxicity.
Ultra-hypofractionated radiation in those 65 years or older with early breast cancer yielded no ipsilateral recurrence after a 10-month follow-up.
The unclear role of hypofractionated radiation in older patients with early breast cancer in prior trials incentivized research for this group.
Patients with HR-positive, HER2-positive breast cancer and high-risk features may derive benefit from ovarian function suppression plus endocrine therapy.
Paolo Tarantino, MD discusses updated breast cancer trial findings presented at ESMO 2024 supporting the use of agents such as T-DXd and ribociclib.
Paolo Tarantino, MD, discusses the potential utility of agents such as datopotamab deruxtecan and enfortumab vedotin in patients with breast cancer.
Paolo Tarantino, MD, highlights strategies related to screening and multidisciplinary collaboration for managing ILD in patients who receive T-DXd.