COUNTERPOINT: Routine Use of Autologous Stem Cell Transplantation in Multiple Myeloma
August 15th 2016Myeloma is clearly not one disease but several. In terms of treatment choices, it is increasingly evident that one size of treatment does not fit all. Moreover, as therapy is tailored to each individual patient, with the ability to mobilize and collect stem cells and retain them after successful induction/remission therapy, younger patients have choices.
MGUS and Smoldering Myeloma: the Most Prevalent of Plasma Cell Dyscrasias
Monoclonal gammopathy of undetermined significance (MGUS) is the most prevalent of the plasma cell dyscrasias and is characterized by a low level of production of serum monoclonal (M) protein (classically less than 3 g/dL).
Tailoring Treatment for Multiple Myeloma Patients With Relapsed and Refractory Disease
Responses to treatment of relapsed and refractory multiple myeloma are characteristically short, and median survival is as brief as 6 months. Although prognostic factors in the context of relapsed and refractory disease require further characterization, high-risk patients include those with certain cytogenetic abnormalities, high β2-microglobulin, and low serum albumin.
Cancer Management Chapter 28: Multiple myeloma and other plasma cell dyscrasias
March 13th 2010Multiple myeloma is a disseminated malignancy of monoclonal plasma cells that accounts for 15% of all hematologic cancers. In 2009, an estimated 20,580 new cases will be diagnosed in the United States, and 10,580 Americans will die of this disease. Incidence rates for myeloma (5.3 in men and 3.5 in women) and mortality rates (3.7 in men and 2.5 in women) per 100,000 population have remained stable for the past decade.
Continued Progress in Treatment Options for Multiple Myeloma: From Past to Present and Future
November 1st 2007Liposomal doxorubicin received FDA approval for use in combination with bortezomib in patients with multiple myeloma who have not previously received bortezomib and have received at least one prior therapy.
Novel Therapeutic Avenues in Myeloma: Changing the Treatment Paradigm
Our better understanding of the complex interaction of multiple myeloma (MM) cells with their bone marrow microenvironment and the signaling pathways that are dysregulated in this process has resulted in a dramatic increase in the therapeutic agents available for this disease. A number of these new agents have demonstrated significant activity in patients with MM. Over the past 5 years, three drugs have received approval from the US Food and Drug Administration for therapy in MM—bortezomib, thalidomide, and lenalidomide. To date, the choice of therapy for MM is not individualized according to the biologic characteristics of the disease, but future studies should enable us to identify patients who may benefit most from certain therapeutic interventions, and thus develop individualized therapy for MM. In this review, we will present some of the treatment algorithms currently developed for patients with MM and focus on established advances in therapy, specifically with thalidomide, bortezomib, and lenalidomide. We will also discuss some of the emerging novel therapeutic agents showing promise in phase I/II clinical trials in MM.
New Treatments for Multiple Myeloma
December 1st 2005In 2004, multiple myeloma was diagnosed in more than 15,000 peoplein the United States and will account for approximately 20% of deathsdue to hematologic malignancies. Although traditional therapies suchas melphalan (Alkeran)/prednisone, combination chemotherapy withVAD (vincristine, doxorubicin [Adriamycin], and dexamethasone), andhigh-dose chemotherapy with stem cell transplantation have shownsome success, median survival remains between 3 to 5 years. Treatmentoptions for patients with multiple myeloma have increased in recentyears, with the promise of improvement in survival. New agents, suchas the proteasome inhibitor bortezomib (Velcade), the antiangiogenicand immunomodulator thalidomide (Thalomid) and its analogs, suchas lenalidomide (Revlimid), together with other small molecules, includingarsenic trioxide (Trisenox), and other targeted therapies, havebeen studied alone and in combination with other antineoplastic therapies,either as induction therapy prior to stem cell transplantation or inpatients with relapsed disease. Bortezomib recently was approved inthe United States for the treatment of multiple myeloma in patientswho have received at least one prior therapy. The use of bortezomibbasedregimens as front-line therapy as well as the use of other agentsin multiple myeloma remain under investigation, and approvals forboth thalidomide and lenalidomide are hoped for soon, with the overallprospect of patient outcome continuing to be increasingly positive.